src.algorithms.deep package
Subpackages
Submodules
src.algorithms.deep.ARGA module
- class src.algorithms.deep.ARGA.ARGA(graph: Graph, num_clusters: int, lr: float = 0.001, latent_dim: int = 16, epochs: int = 100, k: int = 3, use_pretrained: bool = True, save_model: bool = False)[source]
Bases:
DeepAlgorithm
Adversarially Regularized Graph Autoencoder algorithm
- Parameters:
graph (Graph) – Graph object
lr (float) – Learning rate
latent_dim (int) – Latent dimension
epochs (int) – Number of epochs to run
k (int) – Number of iterations to train the discriminator
use_pretrained (bool) – Boolean flag to indicate if pretrained model should be used
save_model (bool) – Boolean flag to indicate if the model should be saved after training
src.algorithms.deep.DeepAlgorithm module
- class src.algorithms.deep.DeepAlgorithm.DeepAlgorithm(graph: Graph, num_clusters: int, lr: float = 0.001, latent_dim: int = 16, epochs: int = 100, use_pretrained: bool = True, save_model: bool = False)[source]
Bases:
Algorithm
Base class for Deep Graph Clustering algorithms
- Parameters:
graph (Graph) – Graph object
lr (float) – Learning rate
latent_dim (int) – Latent dimension
epochs (int) – Number of epochs to run
use_pretrained (bool) – Boolean flag to indicate if pretrained model should be used
save_model (bool) – Boolean flag to indicate if the model should be saved after training
src.algorithms.deep.GAE module
- class src.algorithms.deep.GAE.GAE(graph: Graph, num_clusters: int, lr: float = 0.001, latent_dim: int = 16, epochs: int = 100, use_pretrained: bool = True, save_model: bool = False)[source]
Bases:
DeepAlgorithm
Graph Autoencoder algorithm
- Parameters:
graph (Graph) – Graph object
lr (float) – Learning rate
latent_dim (int) – Latent dimension
epochs (int) – Number of epochs to run
use_pretrained (bool) – Boolean flag to indicate if pretrained model should be used
save_model (bool) – Boolean flag to indicate if the model should be saved after training
src.algorithms.deep.MVGRL module
- class src.algorithms.deep.MVGRL.MVGRL(graph: Graph, num_clusters: int, lr: float = 0.001, latent_dim: int = 16, epochs: int = 100, use_pretrained: bool = True, save_model: bool = False)[source]
Bases:
DeepAlgorithm
Multi-View Graph Representation Learning algorithm
- Parameters:
graph (Graph) – Graph object
lr (float) – Learning rate
latent_dim (int) – Latent dimension
epochs (int) – Number of epochs to run
use_pretrained (bool) – Boolean flag to indicate if pretrained model should be used
save_model (bool) – Boolean flag to indicate if the model should be saved after training
src.algorithms.deep.utils module
- src.algorithms.deep.utils.compute_diffusion_matrix(adj: ndarray, alpha: float = 0.2) ndarray [source]
Computes the diffusion matrix for MVGRL using PageRank
- Parameters:
adj (np.ndarray) – Adjacency matrix
alpha (float) – Teleport probability
- Returns:
Diffusion matrix
- Return type:
np.ndarray
- src.algorithms.deep.utils.get_clusters(z: ndarray, n_clusters: int, method: str = 'kmeans') ndarray [source]
Cluster the encoded data using the specified method
- Parameters:
z (np.ndarray) – Latent space
n_clusters (int) – Number of clusters
method (str) – Clustering method
- Returns:
Cluster labels
- Return type:
np.ndarray